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A critical evaluation of near-wall 
two-equation models against direct 
numerical simulation data 
A. Sarkar and R. M. C. So* 
Mechanica l  and Aerospace Engineer ing,  Ar izona State University, Tempe, Ar izona 

Two-equation turbulence models with near-wall corrections are assessed by applying them 
to calculate plane Couette f low--a flow case where conventional two-equation models and 
second-order closures fail to give a correct prediction of the spatial distribution of the 
turbulent kinetic energy--plane channel flow, and flat plate boundary-layer flow. The 
predictions of 10 near-wall two-equation models, including the k-~ and k-o~ models and 5 
recently developed asymptotically consistent near-wall k-e models, are compared with data 
obtained from direct numerical simulations at very low Reynolds numbers. It is found that 
models that are not asymptotically consistent are incapable of predicting the spatial 
distribution of k correctly in Couette flows. Instead, they give a fairly uniform distribution of 
k across a substantial portion of the channel. Of all the models evaluated, the asymptoti- 
cally consistent k-e models are found to perform the best compard to direct numerical 
simulation (DNS) data and experimental measurements. Five of the ten models are further 
validated against DNS clata of a backstep flow at low Reynolds number. Similar results as 
before are obtained. Therefore, the present results lend credence to the hypothesis that an 
internally consistent and asymptotically correct near-wall model is of crucial importance to 
the calculations of wall-bounded turbulent flows. © 1997 by Elsevier Science Inc. 
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Introduction 

Many important scientific and engineering applications involving 
turbulent flows require the direct integration of the modeled 
turbulence equations to a solid boundary. Turbulent flows involv- 
ing boundary-layer separation or complex alterations of the 
surface transport properties represent but two examples. For 
these problems, near-wall turbulence modeling plays a crucial 
role. The predictions of an otherwise sound high Reynolds num- 
ber turbulence model can be degraded significantly when inte- 
grated to a solid boundary without the proper near-wall modi- 
fications. Consequently, near-wall turbulence modeling has 
received considerable attention during the past decade with the 
bulk of the effort directed towards two-equation and second-order 
models (Patel et al. 1985; So et al. 1991a: Hanjalic 1994). 

The inability to measure turbulence statistics close to a wall 
reliably has impeded progress in near-wall turbulence modeling. 
Although advanced optical techniques have been developed re- 
cently for the study of near-wall flows, accurate measurements of 
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viscous dissipation is still lacking (Alfredsson et al. 1988; Karls- 
son and Johansson 1988; Nishino and Kasagi 1989). However, 
during the past decade, direct numerical simulation (DNS) data 
have become available for wall-bounded turbulent flows, and 
these include fully developed plane and curved channel flows 
(Kim et al. 1987; Mansour et al. 1988; Moser and Moin 1987; 
Kim 1991), two-dimensional (2-D) flat plate boundary layer 
(Spalart 1988), fully developed Couette flow (Lee and Kim 1991; 
Kristoffersen et al. 1993), and backstep flow (Le et al. 1994). 
These DNS data provide details of the turbulence structure near 
solid boundaries, which include the fluctuating pressure field and 
its correlation with the fluctuating velocity field, the viscous 
dissipation of turbulent kinetic energy, and other higher-order 
statistics, that far exceed anything that can be obtained from 
physical experiments. When the DNS data are used in conjunc- 
tion~with the mathematical constraints of asymptotic consistency, 
a powerful tool is available for the development of improved 
near-wall turbulence models (Launder 1986; Mansour and Shih 
1989; So et al. 1991a; Rodi and Mansour 1993; Hanjalic 1994). 

The review article by Patel et al. (1985) summarized the status 
of near-wall two-equation modeling up to that time. Since then, 
many more near-wall two-equation models have been proposed 
using DNS data to help develop more accurate correcting func- 
tions to account for near-wall viscous effects. These include k-e 
models (Nagano and Hishida 1987; Myong and Kasagi 1990; 
Deng and Piquet 1991; Karlsson et al. 1991; Michelassi et al. 
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1991; Nagano and Tagawa 1991; So et al. 1991b; Yang and Shih 
1993; Zhang et al. 1993; Abe et al. 1994; So et al. 1994), k-r 
model (Speziale et al. 1990), and k<o model (Wilcox 1994). Here 
k is the turbulent kinetic energy, e its dissipation rate, r is a 
turbulent time scale, and to = e l k  is a specific dissipation rate, 
after Wilcox (1994). These models were developed making use of 
DNS data from channel flows only. They were applied to calcu- 
late a variety of 2-D flows including compressible flows (Zhang 
et al. 1993). Good success was reported by the authors. However, 
none of these models has been systematically evaluated against 
all three types of basic DNS data; channel flow, Couette flow, 
and boundary-layer flow. There are subtle differences between 
these three simple wall shear flows. For example, the k level is 
relatively high and fairly uniform over a substantial portion of 
the channel in Couette flow, while this is not true for both 
channel and boundary-layer flows. On the other hand, there is 
external flow entrainment in the case of boundary-layer flow but 
not in Couette and channel flows. However, the calculated von 
Karman constant K from the DNS data is constant and is 
reported to be around 0.40 + 0.02. A good model should be able 
to correctly recover the log law, which is valid for all three types 
of flows, and to accurately reproduce the differences between the 
three flows over a range of Reynolds numbers. 

It has long been argued that conventional high Reynolds 
number turbulence models are not very suitable for calculating 
plane Couette flows (Henry and Reynolds 1984). The reason for 
this can be attributed to the erroneous prediction of the spatial 
distribution of k across the channel even when anisotropic model 
as well as second-order and third-order closures are used. Nisiz- 
ima and Yoshizawa (1987) proposed an anisotropic near-wall k-e 
model, and Schneider (1989) suggested a Reynolds-stress model 
for the calculation of plane Couette flows. Their argument is that 
the lack of anisotropy in conventional models is the main sources 
of the incorrect k prediction in plane Couette flow calculations. 
However, the model of Nisizima and Yoshizawa is not asymptoti- 
cally consistent in the near-wall region, and their results again 
show that the calculated value of k, contrary to DNS data and 
measurements, is still very much in error beyond the near-wall 
region. Even the higher-order model predictions of Schneider 
fail to capture the behavior of k correctly. The primary objective 
of the present paper is to demonstrate that the incorrect predic- 
tion of plane Couette flow is due mainly to the inability of the 
models to mimic the near-wall flow correctly. This incorrect 
near-wall calculation contributes to a constant k across the 
channel without predicting a peak near the wall. In other words, 
if the physical near-wall flow is reproduced correctly by the 
turbulence model, the rest of the flow could be calculated fairly 
correctly. Therefore, plane Couette flow is a good test case for 
any newly developed near-wall two-equation model of turbu- 
lence. 

The second objective of the present study is to evaluate the 
performance of the more recently developed near-wall two-equa- 
tion models against these three basic types of DNS data. Three 
models that have been evaluated by Patel et al. (1985) as reason- 
ably good are used as baseline models to demonstrate the 
progress made since then. These are the local models of Jones 
and Launder (1972) and Launder and Sharma (1974) and the 
model of Chien (1982). It is impractical to compare all two-equa- 
tion models; therefore, only three different types of two-equation 
models--the k-e, the k-'r, and the k-to--are evaluated in the 
present study. As far as the k-r and k-to models are concerned, 
there is only one representative example in each category, and 
they are given by the models of Speziale et al. (1990) and Wilcox 
(1994), respectively. Among the k-e models proposed recently, 
only four are compared in the present investigation. These in- 
clude four single-time-scale models, of which three (Myong and 
Kasagi 1990; Karlsson et al. 1991; So et al. 1991b) are formulated 

without accounting for the destruction of the dissipation term in 
the e-equation and one (Yang and Shih 1993) which includes a 
proposal to account for the destruction of the dissipation term 
along the lines suggested by Durbin (1991). The former three 
models (Myong and Kasagi, 1990; Karlsson et al., 1991; So et al. 
1991b) have damping functions proposed for the eddy-viscosity 
vt, that depend on y+ = y u J v ,  where y is the normal coordinate, 
u,  = (%/p)1/2 is the friction velocity, % is the wall shear stress, 
v is the kinematic viscosity, and p is the fluid density, while the 
damping functions in the latter model has no y+ dependence. 
Among the three former k-e models, two (Karlsson et al., 1991; 
So et al. 1991b) are calibrated to give good agreement with 
boundary-layer flows, while one is derived based on internal flow 
data. The overall applicability of these models will be best tested 
by using them to calculate flows other than those reported by the 
authors. Finally, a new model based on that proposed by So et al. 
(1991b) is also included in this evaluation of two-equation mod- 
els. The damping function in this new model does not depend on 
u,. It only depends on a turbulent Reynolds number and a 
Reynolds number defined with respect to the dissipation velocity 
and the distance from the wall. Furthermore, the model does not 
contain a proposal to account for the destruction of the dissipa- 
tion term. This model, like that of Yang and Shih, makes use of 
DNS channel flow data to derive the damping function. Details 
of the development of this last model is given by Sakar (1995). 
Note that none of these latter k-e, k-% and k-to models is a local 
model, because they depend on the normal coordinate. 

The modeled equations 

Incompressible flows are considered. A Cartesian coordinate 
system with y = 0 at the wall of 2-D Couette, channel, and 
boundary-layer flows is chosen and fully developed flow is exam- 
ined. The Reynolds stresses can be expressed in terms of an 
isotropic eddy-viscosity by invoking gradient transport. Thus sim- 
plified, the definitions of the Reynolds stresses and eddy-viscosity 
can be written for all models examined here as 

2 
--UiU j = 2vtSij - -~k~ij 

v t = C ~ f ~ k ~  

( la)  

( lb)  

where Sij = (OUi/Ox.i + OUyOxi)/2 is the mean strain rate, U/ is 
the ith component of the mean velocity, • = k / e  for all k-e 
models considered, • = 1/to for the k-to model and • = x for 
the k-x model, C~ is a model constant, f~ is a damping function, 
and the overbar is used to denote time-averaged quantities. The 
governing mean flow and turbulence equations ean then be 
reduced to 

DU 

Dt 

D k  

Dt 

D8 

Dt 

+ - -  (v  + vt) 
p dx Oy 

v + + Pk - 13*e + × 
oy 

Oy v +  + C ,  lfl--~tPk--C~2f2--~t+f; 

(2) 

(3) 

(4) 

where D / D t  is the material derivative. U is the mean axial 
velocity, P is the mean pressure, Pk = vt(OU/OY) 2 is the produc- 
tion of k, T t is a turbulent time scale ~ is a reduced e, t is time, 
X and ~ are near-wall correcting functions for the k and e 
equations, respectively, ]'1 and ]'2 are damping functions and ~r k, 
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cry, C~1 , and C~2 are model constants. For fully developed Cou- 
ette and channel flows, D / D t  reduces to zero, while for bound- 
ary-layer flow D / D t  is given by (UO/Ox + VO/ay),  where V is 
the mean velocity along the y-direction. 

The governing equations for the eight k-e models, hereafter 
designated as CH for the Chien (1982) model, JL for the Jones 
and Launder (1972) model, KTS for the Karlsson et al. (1991) 
model, LS for the Launder and Sharma (1974) model, MK for 
the Myong and Kasagi (1990) model, SSA (Sakar 1995) for the 
new model, SZS for the So et al. (1991b) model, and YS for the 
Yang and Shih (1993) model, can all be cast into the above form. 
Therefore, their differences are in the choice for T t, ~ and the 
specifications for × and 6- It should be pointed out that the e in 
the e-equation of the CH, JL, and LS models is a reduced e 
where the wall value has been subtracted out. On the other 
hand, the variable in the e-equation of all other models is the 
true dissipation rate. This will become obvious when the bound- 
ary condition for e is specified. 

The k-equation used in the k-x model (Speziale et al. 1990), 
hereafter designated as SAA, and the k-to model (Wilcox 1994), 
hereafter designated as WI, is the same as that used in the k-e 
models except for the specification of 13% which is taken to be 1 
for all models other than WI. Wilcox makes use of ~* to enforce 
the correct near-wall behavior for the variables solved and sug- 
gests the following expression for 13% or 

9 [ 5/18 + ( R e t / R p ) '  ] 
(5) 

where Rp is a model constant. The turbulent time scale equation 
for "r = k / e  and the specific dissipation rate equation for ¢o = 1/-r 
can now be written as 

v +  vt l a~ 2 Ok ax 
- - -  + v +  

Dt ay O'.r2 ] Oy j "k Oy Oy 

- -  "~- U "[" O't2 ] 0.~' a y  (1 - C~I )~P  k 

+(C~2ft  f 2 - 1) 4-~ (6) 

oo o[( o 

v + C , , n f l - ~ P k - C , , , e f 2 J +  ~ (7) 
Dt ay ¢r,o l a y  ] 

The model constants are specified by O'.rl , o'T2 , ora~ , Co~I,  and C=2, 
while × and ~ are the near-wall correcting functions. According 
to Wilcox (1994), the damping function f~ introduced in the v t 
definition renders the behavior of the k-o~ model asymptotically 
correct in the very near-wall region. This claim is tested in the 
following comparisons with DNS data. 

The differences between these models are summarized in 
Table 1, while Table 2 lists all the model constants adopted by 
the authors, and Table 3 tabulates the different damping func- 
tions used in the models. In Table 1, the reduced dissipation 
rates ~ and e* used in the SSA and SZS models are given by 

= e - 2v(ayrk/Oy) 2 and e* = e - 2 v k / y  2, respectively. The 
different Reynolds numbers appearing in Table 3 are defined as 
R e t = k Z / v e ,  R e y = y ~ f k / v  and R e ~ = ( v e ) t / 4 y / v .  It can be 
seen that the only difference between the SSA and SZS models is 
in the near-wall correcting function, which is a consequence of 
the completely different damping functions invoked for the 
eddy-viscosity. The ten models examined assume from one damp- 
ing function, such as the SSA, SZS, and YS models, to three 
damping functions, such as the SAA model. The k-e models are 
selected for their increasing ability to mimic near-wall flow, with 
the JL model being the least asymptotically consistent. If the 
hypothesis that near-wall asymptotic consistency is very impor- 
tant for the correct prediction of wall-bounded flows, particularly 
Couette flows, is true, the agreement between predictions and 
data should become better as the model's asymptotic consistency 
improves, if the same amount of empiricism is introduced into 
the model. Further comparisons with the calculations of the SAA 
and WI models are carried out to illustrate the importance of 
near-wall modeling, irrespective of the type of two-equation 
models used to predict wall-bounded flows. The SAA and WI 
models are asymptotically more consistent than the JL model, 
therefore, they should yield better results than the JL model. If 
the SAA and WI models do, indeed, give better results, the 
comparisons would lend further credence to the hypothesis that 
asymptotic consistency is important in near-wall modeling. 

The boundary conditions for U are zero at the wall, or y = 0 
and y = 2h, and U =  U= in the free stream. Here, 2h is the 
channel height. As for k, the boundary condition is no-slip at the 
wall for all the two-equation models examined, while the bound- 
ary conditions for e, x, and oJ arc model dependent. Because 
CH, JL, and LS solve a reduced form of the s-equation, their 
boundary conditions are e w = 0 at the wall. The boundary condi- 
tion e w = [4k~y~ 2 - e~] is used in the MK model, while e~ = 
v(O2k/ay2) w is specified in the KTS model, and e w = 

Table 1 Near-wall correcting functions for the near-wall turbulence models tested 

Model X T, ~ 

CH - 2vk /y  2 k/e e 2 re  exp[ - y +/2]/y 2 
2 2 

JL - 2v(ovrk.lOy) k/e e 2vvt(O2U/ay 2 ) 
KTS 0 2 k/e e 0 2 
LS - 2 v ( O v ~ / O y )  k/e e 2vvt (02U/ay 2 ) 
MK 0 k/s e 0 
SAA 0 -- -- 0 

SSA 0 k/e ~ exp ~ -  - 0 .57-~-  -I- 0.5 k 

[ (Ra  t~21[ e~ (e*)21 
SZS 0 k/e ~ exp/-~-~-~ JL- 2.03-+ 1.s--/-] 

L " " 

YS 0 k Jr e vv t (O2U/Oy  2 ) 
e ' , e l  

Wl 0 - -  - -  0 

Int. J. Heat and Fluid Flow, Vol. 18, No. 2, April 1997 199 



Evaluation of near-wall two-equation models." A. Sarkar and R. M. C. So 

Table 2 Model constants for the near-wall turbulence models tested 

Model 0., % 0.,1 o"+2 0.., C~; C,2 C=; C",2 C, Other 

CH 1.0 1.3 - -  - -  - -  1.35 1.8 - -  - -  0.090 
JL 1.0 1.3 - -  - -  - -  1.55 2.0 - -  - -  0.090 
KTS 1.0 1.3 - -  - -  - -  1.44 1.92 - -  - -  0.090 

LS 1.0 1.3 - -  - -  - -  1.44 1.92 - -  - -  0.090 
MK 1.4 1.3 - -  - -  - -  1.4 1.8 - -  - -  0.090 
SAA 1.36 1.36 1.36 1.36 - -  1.44 1.83 - -  - -  0.090 
SSA 1.0 1.45 - -  - -  - -  1.5 1.83 - -  - -  0.096 
SZS 0.75 1.45 - -  - -  - -  1.5 1.83 - -  - -  0.096 
YS i .0 1.3 - -  - -  - -  1.44 1.92 - -  - -  0.090 

Wl 2.0 - -  - -  - -  2.0 - -  - -  5/9 3/40 1.0 

m = 3 × 1 0  -5 
n=2 .9  

a l =  1.5 X 10-4 
a 3 = 5 . 0 X 1 0  -7 
as= 1.0 X 10 - lo  

Rk= 6 
R~=2.7 
RI3=8 

% = 0 . 1  
* = C", 2/3 

2v(Ofk/Oy) 2 is a s s u m e d  in  t h e  S S A ,  S Z S ,  a n d  Y S  m o d e l s .  T h e  

s u b s c r i p t s  w a n d  1 a r e  u s e d  t o  d e n o t e  t h e  w a l l  a n d  t h e  f i r s t  g r i d  

p o i n t ,  r e s p e c t i v e l y .  O n  t h e  o t h e r  h a n d ,  T w = 0 is a s s u m e d  f o r  t h e  

S A A  m o d e l .  S t r i c t l y  s p e a k i n g ,  to w is i n f i n i t e  a t  t h e  w a l l  f o r  t h e  

W I  m o d e l .  H o w e v e r ,  in  p r a c t i c e ,  tol  = (2u~/vf3*)/(Y~ 2) is p r o -  

p o s e d  b y  W i l c o x  ( 1 9 9 4 )  b a s e d  o n  a n  a s y m p t o t i c  a n a l y s i s  o f  t h e  

t o - e q u a t i o n .  T h e s e  c o n d i t i o n s  a r e  s u m m a r i z e d  in  T a b l e  3. 

M e t h o d s  o f  s o l u t i o n  

I n  t h e  c a s e  o f  c h a n n e l  a n d  C o u e t t e  f l o w s ,  a f i n i t e  v o l u m e  m e t h o d  

is u s e d  t o  d i s c r e t i z e  t h e  g o v e r n i n g  e q u a t i o n s  a n d  a t i m e - m a r c h -  

i n g  t e c h n i q u e  is a p p l i e d  t o  s o l v e  t h e  f i n i t e - d i f f e r e n c e  e q u a t i o n s .  

S t e a d y - s t a t e  s o l u t i o n s  a r e  o b t a i n e d  w h e n  t h e  c a l c u l a t e d  f l o w  

p r o p e r t i e s  a t  t w o  c o n s e c u t i v e  t i m e  s t e p s  a r e  in  a g r e e m e n t  t o  

Table 3 The damping functions assumed for the near-wall turbulence models tested 

Model f l f2 f~ Wall BC 

[ (Re)21 CH 1 1 - 0 . 3 e x p  - y 1 - e x p ( - 0 . 0 1 1 5 y  +) Sw=0 

JL 1 1 - 0.3 exp( -  Re 2) exp 1 + Ret/50.0 sw=0  

0.39 [1 - 2.468y +] v{  02k / 
KTS 1 1 - e x p [ - 0 . 0 2  (y+)2] 1 -t y+ exp[_m(y+)n]  ~w = ~ ~y2 ] w 

LS 1 1 . 0 -  0.3 exp(-  Re 2 ) exp ( l"O+Ret/50) 2 ew=O 

M K  1 { 1 - 2 e x p [ - ( - ~ ) 2 ] }  ( 1 + ~ ) 3 " 4 5  ' [ 1 - e x p ( - - ~ O ) ]  +w--[--[4kl+y+~-e+] 

2 2 

ssA 

SSA 1 

SZS 1 

YS 1 

(XO+ Ret/R = 
Wl 

C,f~( 1 + Ret/R,o ) 

X [1 - exp( -  y+/5)} 2 

2 
[1 - exp( - y+/4.91] 1 3.45 ] h[ y+ + ~ j t a n  ~-~-5) ++=o 

2 

.-++I +++I (1 + 3/Re3/4) X [1 + 80 exp( - R%)] -- ~,-~-Y ] w 
2 

X [1 - exp( - Re J43 - Re2/330)] 2 

1 3.45 1 I ,+ 2v( 1 
"--t+J+ 

2 

[1 - e x p I - a , . e , -  . -  2v( / 
- t - ; T  J+ 

¢x~ + Ret/R , 12u 2 ) 
1 -{- Re t/l:! k 001 ],~* y+ 2 
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within a specified convergence criterion. All the above equations 
can be cast into a common form if the terms on the right-hand 
side, besides the diffusion term, are considered to be source 
terms. Therefore, the finite-difference equation for ~ = U, k, s, 
x, or to can be written as: 

2At  
~n+l = ~ n +  (Ayj+Ayj_I)(~y+I/2_~j_I/2)+AtAj  (8) 

where Aj is the source term in the equation and is zero for the U 
equation, Ay/=Yj+1-Y/ ,  and [ j + l / :  and [j-~/2 are the gradi- 
ents of • approximated by central differences. The convergence 
criterion is defined with respect to U and is given by 

= u n + l - u n  

cr At U n (9) 

where cr = 10 -8 as assumed for all calculated cases. When this is 
satisfied, the k convergence according to an expression similar to 
Equation 9 is about 10 -5. 

To use a common numerical algorithm to solve the channel 
and Couette flows, the following transformation is carried out for 
the Couette flow. The moving wall velocity of the Couette flow is 
specified as 2U W, therefore, the centerline velocity is U w. This 
configuration can be easily transformed to an equivalent one 
where the top wall velocity is Uw, and the bottom wall velocity is 
- Uw, and the centerline velocity is zero. The calculation can be 
performed over one half of the channel. In other words, the flow 
in the half channel is equivalent to a plane Couette flow with 
moving wall velocity U~ and channel width h. In this new 
configuration, the coordinate system is attached to the stationary 
wall where y is equal to zero. The governing equations are 
normalized by Uw and h before solving, and the Reynolds num- 
ber Re = U,,h/v is the only dimensionless parameter present. 
Specifying Re is equivalent to fixing the mass flow rate through 
the channel, and u~ becomes a calculated result. Therefore, if 
the calculated U + at the centerline does not agree with data, the 
error is in the predicted wall shear stress. In the case of channel 
flow, the equations are normalized by u,  and h; therefore, 
Re~ = u,h /v  appears as the only dimensionless parameter in the 
equations. The equation.,; are solved by specifying Re, or equiva- 

lently the pressure gradient. With this formulation, the mass flow 
rate is not specified, thus error in centerline U + reflects an 
incorrect estimate of the centerline U rather than u~. A nonuni- 
form grid is used to carry out the calculations, and for accurate 
resolution of the near-wall flow, at least five grid points are 
located within 0 < y + <  5 and 25 grid points within 5 < y + <  50. 
Therefore, both the viscous sublayer and the buffer layer are 
resolved properly. Grid-independent studies have been carried 
out using LS, MK, SAA, SSA, and YS. The results thus obtained 
are grid independent where the number of grid points are not 
less than 60 in the y-direction. As a result, the final choice on 
the grid is 110 for all models for both the Couette and channel- 
flow calculations. 

On the other hand, the boundary-layer calculations are car- 
ried out using the code of Wilcox (1994) and the results are 
compared at a given Re o = U®O/v, where 0 is the momentum 
thickness of the boundary layer. This code automatically varies 
the grid number based on a prescribed tolerance at the edge of 
the boundary layer. Because a common numerical technique is 
used to perform calculations in each flow type for all models 
examined, all model calculations are compared on the same 
basis. This way, any discrepancies between model predictions 
would actually reflect the true differences between the perfor- 
mance of the models. 

C o m p a r i s o n s  w i t h  s i m p l e  f l o w s  

Five sets of DNS data are used; these are the Couette flow data 
of Lee and Kim (1991) and Kristoffersen et al. (1993), the 
channel flow data of Kim et al. (1987) and Kim (1991), and the 
boundary-layer data of Spalart (1988). In addition, the calcula- 
tions are compared with a set of experimental data on boundary- 
layer flow with detailed near-wall measurements at Re e = 2420 
(Karlsson and Johansson 1988). The Couette flows examined 
have Re = 1300 and 3000, or Re, = 85 and 170, respectively. In 
these cases, U,~ is given, so the calculated u¢ is compared in the 
form uJUw, which is given by the authors. On the other hand, 
the channel flows are calculated by specifying Re~. The two cases 
studied have Re~ = 180 and 395. Because u,  is given in these two 
cases, the calculated centerline velocity U~ is compared with 
data. The two boundary-layer flows are evaluated at Re e = 1410 
and 2420, respectively. Because 0 is specified, only the calculated 

Table 4 Comparisons of calculated asymptotes" K and u, with data for Couette flows 

Couette Model calculations 
flow DNS 

variable data CH JL KTS LS MK SPA SSA SZS YS Wl 

Re= 1300 
Re, = 85 

K 0.40 0.28 0.45 0.48 0.37 0.33 0.34 0.43 0.32 0.42 0.32 
u,/U w 0.033 0.031 0.032 0.032 0.032 0.031 0.031 0.032 0.033 0.032 0.032 

a, 0.12 0.06 0.037 0.074 0.02 0.051 0.163 0.096 0.109 0.178 0.008 
w/2 - -  0.0 0.0 0.068 0 0.049 0.021 0.093 0.109 O. 178 0.0 

auv × 103 1.61 0.634 0.868 2.033 0.17 1.067 3.21 1.87 0.867 0.467 0.001 

Re = 3000 
Re,=  170 

K 0.40 0.36 0.44 0.46 0.42 0.37 0.39 0.42 0.39 0.41 0.33 
u~/Uw 0.029 0.028 0.029 0.029 0,03 0.028 0.028 0.029 0.029 0.029 0.026 

a, - -  0.06 0.04 0.075 0,02 0.051 O. 10 0.091 O. 109 O. 182 0.008 
ew/2 - -  0.0 0.0 0.068 0,0 0.05 0.019 0.093 0.108 0.178 0.0 

auv x 103 - -  0.64 0.949 1.866 0,19 0.933 1.85 1.80 0.85 0.52 0.001 
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Table  8 Comparisons of calculated asymptotes' K and U e with data for channel flows 

Channel 
flow DNS Model calculations 

variable data CH JL KTS LS MK SPA SSA SZS YS Wl 

Re~ = 180  
K 0.40 0.28 0.44 0.49 0.31 0.32 0.34 0.39 0.32 0.39 0.38 

Uc/U ~ 18.20 19.14 18.73 17.37 18.90 18.25 18.26 17.47 17.30 17.47 16.51 
ak 0.080 0.042 0.024 0.051 0.010 0.038 0.056 0.080 0.096 0.150 0.200 

e w/2 0.083 0,0 0.0 0.060 0.0 0.033 0.013 0.080 0.090 0.148 0.0 
auv X 103 0.7 0,48 0.62 0.82 0.071 0.62 1.43 1.3 0.76 0.36 0.003 

Re,=395 
K 0.40 0.31 0.45 0.50 0.34 0.35 0.37 0.41 0.40 0.43 0.37 

Uc/U~ 19.96 20.74 20.15 19.20 20.10 20.09 20.06 19.46 19.32 19.22 18.70 
ak 0.106 0.045 0.032 0.050 0,012 0.042 0.073 0.086 0.100 0.167 0.022 

ew/2 0.110 0.0 0.0 0.070 0.0 0.040 0.016 0.086 0.100 0.165 0.0 
auv × 103 1,1 6.0 0,77 0,82 0.075 0.68 1.87 1.39 0.80 0.39 0.003 

skin friction coefficients Cf = 2 % / p U  2 are compared. All these 

values are tabulated in Tables 4-6. 
Comparisons are made by plotting the results in the form of 

U + = U/u~,  k + = k / u  2, - u v  + = - E d / u  2 and e + = v e / u  4 versus 

ln(y+). Here, u and v are the fluctuating velocity components 
along the x and y directions, respectively. Detailed comparisons 
are made with data whenever possible. However, only the com- 
parisons with k + and e + are shown here. The calculations of 
U ÷ and - u v  + are not shown because, in general, they are in 
good agreement with data. The results for the Couette flows are 
given in Figure 1, those for the channel flows are plotted in 
Figures 2 and 3 and the boundary-layer flow comparisons are 
displayed in Figures 4 and 5. In addition, data on f~ are available 
from Kim et al. (1987), Kim (1991) and Kadsson and Johansson 
(1988). The comparisons with these data are shown in Figures 6 -  
8, and the ability of the models to correctly predict K is also 
assessed. In determining K, the following procedure is adopted. 
The authors' reported K in each data case is used to determined 
the range of y+ where the log-law is applicable. A straight line is 
drawn through the same range of y+ in a semilog plot of U + to 
evaluate the slope of the straight line and, hence, K for each 
calculated flow case. The K thus determined is listed in Tables 
4-6. 

Finally, the near-wall asymptotes of k ÷, - u v  +, and e + are 
calculated in order to analyze the asymptotic consistency of the 
different models. According to Launder (1986) k +, uv ÷, and e ÷ 
near a wall can be expanded in terms of y+ as 

k + = a k Y  +2 + b k y  +3 + , . . . ,  

--UV += auvY +3 + bury +4 + , . . . ,  

e += 2a k + 4bky ++ . . . . .  

(10) 

(11) 

(12) 

where ak, bk, and a,,o,b,, v are coefficients in the expansions 
for k ÷ and - u v  ÷, respectively. Therefore, the ratio k + / e + y  +2 
is exactly 1 / 2  at the wall and serves as a check on the asymptotic 
consistency of the two-equation models. In view of this, two 
independent ways of determining a k are available, one from the 

÷ If the model is slope of the k + distribution and another from e w. 
asymptotically consistent, the two values of a k thus determined 
are equal. Their difference is an indication of the model's devia- 
tion from correct asymptotic behavior. Although CH, JL, and LS 
solve for the reduced e with e w = 0 at the wall, the true e can be 
reconstructed. In the present investigation, this is not carried 
out. The calculated values of ak, 8w/2+ and auv are also listed in 
Table 4-6. 

Table  6 Comparisons of calculated asymptotes" K and C t with data for boundary-layer flows 

Boundary-layer 
flow DNS and 

variable exp. data 

Model calculations 

CH JL KTS LS MK SAP, SSA SZS YS Wl 

Ree= 1410 
K 0.41 0.33 0.54 0.44 0,56 0.39 0.39 0.41 0.34 0.41 0.32 

Cf x 103 4.1 3.76 3.47 4.2 3,38 4.63 4.64 4.04 4.03 4.09 3.81 
a, - -  0.056 0.045 0.07 0.007 0.178 0.171 0.089 0.105 0.22 0.06 

ew/2 0.13 0.0 0.0 0.069 0.0 0.165 0.141 0.091 0.106 0.164 0.0 
auv x 103 - -  0.63 0.45 0.013 0.053 0.017 0.015 1.90 0.70 0.453 0.005 

Re e = 2420 
K 0.41 0.33 0.52 0.45 0.46 0.41 0.43 0.42 0.36 0.41 0.31 

Cfx  103 3.54 3.41 3.33 3.80 3.10 4.13 4.16 3.63 3.62 3.68 3.44 
a, - -  0.056 0.031 0.07 0.010 0.136 0.164 0.091 0.105 0.22 0.05 

ew/2 0.10 0.0 0.0 0.069 0.0 0.161 0.131 0.092 0.106 0.154 0.0 
a,v X 103 - -  0.63 0.69 0.013 0.068 0.013 0.017 0.90 0.70 0.63 0.008 
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nel f lows 

From the Couette flow results, it can be seen that SSA and 
YS yield a fairly accmate prediction of K, while the worst 
prediction is given by Wl (Table 4). The accuracy in the predic- 
tion of u, is also compared in Table 4. These results show that 
the prediction of u, by all models is accurate to within 6% of 
each other. The calculated spatial distributions of k ÷ by JL and 
LS fail to yield the expected behavior characterized by a sharp 
rise to a maximum near the wall and a gradual drop to a constant 
value in the central core of the channel (Figure 1). While the 
performance of JL and LS is worst for the Re~ = 170 case, CH 
gives a relatively poorer agreement with data for the Re, = 85 
case (Figure 1). Other k -e  models, such as CH, KTS, MK, and 
SZS, give some improvements in the predictions of k+; however, 
they are still substantially in error compared to the data. The 
performance of SAA and WI is not much better compared to 
these k-e models. It seems that, with the exceptions of SSA and 
YS, the model performance is highly dependent on Re. These 

comparisons show that the correct prediction of the spatial 
distribution of k + in a Couette flow is strongly influenced by the 
model's ability to reproduce the near-wall flow. This observation 
is substantiated by the calculated a k and ~+/2 (Table 4). Al- 
though KTS, MK, SSA, SZS, and YS are asymptotically consis- 

e,~/2 tent, only SSA and SZS yield values of a k and + approxi- 
mately equal to those given by DNS data. As for the prediction 
of a=v, SSA yields a value that agrees to within 20% of the DNS 
data. Other model calculations are greatly in error. 

In the channel flow case, three models yield an overall 
reasonable prediction of k ÷, and they are KTS, SSA, and YS 
(Figure 2). Other model calculations are either wrong in the 
inner region, such as those given by JL, LS, MK, and SAA, or 
near the channel core, such as those predicted by CH and SZS. 
Predictions of ~+ are generally in good agreement with data 
beyond y+= 25 for all models (Figure 3). The only difference 
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comes in the near-wall region 0 < y + <  25. Because the 8 pre- 
dicted by the CH, JL, and LS models is a reduced e, it has to go 
to zero at the wall, so the comparison in the inner region should 
be discounted. Although the SAA model does not assume e to go 
to zero at the wall, it yields a surprisingly low prediction of e ÷ in 
the inner region, 0 <y÷ < 5, and predicts a maximum away from 
the wall at about the location where the data indicate a plateau 
(Figure 3). The performance of WI is, in general, better than 
SAA and gives a fairly correct prediction of the plateau. As for 
other k - e  models, the predictions that are in good overall agree- 
ment with data for the two Re~ cases examined are given by SSA 
and SZS. On the other hand, YS gives a relatively large variation 
in the region, 0 _<y+< 25. Among the models investigated, only 
the SSA, SZS, and YS are capable of predicting a maximum e ÷ 
at the wall; YS tends to overpredict, while SSA underestimates 
the maximum slightly (Figure 3). The calculated K is compared in 
Table 5. It can be seen that only SSA yields a value of 0.40 + 0.01 
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for the two different Rer calculated. All other models give errors 
larger than this; for CH and KTS, the error is as large as +25%. 
If the model is asymptotically consistent, then the values of e~+/2 
and a k are identical. It can be seen that four models, MK, SSA, 
SZS, and YS, satisfy this criterion (Table 5). However, only SSA 
and SZS yield an a k that is in reasonable agreement with the 
DNS data, while YS overpredicts it by more than 60% and MK 
underestimates by more than 100%. With the exception of LS 
and WI, the model predictions of a,v are in agreement with 
DNS data to within the same order (Table 5). Obviously, the 
prediction of this quantity has little or no effect on the overall 
calculations of - u v  + and U ÷ which are in good agreement with 
data. 

With the exception of KTS, SSA, SZS, and YS, the predic- 
tions of U + in boundary-layer flows are, in general, poorer 
compared to those in channel and Couette flows. Again, in these 
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models, their  performance seems to depend on Re 0. Some mod- 
els give a better prediction at a lower Re o, such as MK and SAA, 
while others yield more correct results at higher Re0, such as CH 
and LS. The incorrect predictions can be attributed to errors in 
the estimate of Cf whose values are compared in Table 6. 
Overall, the error in the prediction of C I is within 10% of that 

given by the data, except those of MK and SAA. The best 
predictions are rendered by SSA, SZS, and YS, which are correct 
to within 4%. From Table 6, it is clear that a correct calculation 
of Cf does not automatically yield an equally correct prediction 
of K. The two models that give correct predictions of g and Cf 
for the two Reynolds numbers investigated are SSA and YS. This 
result together with those obtained from Couette and channel 
flows show that SSA and YS, in general, outperform all other 
models. The predictions of k ÷ by JL and LS are quite poor, 
because the models fail to reproduce the behavior of the distri- 
butions correctly. Other models give a fairly accurate prediction 
of the behavior of the k ÷ distribution across the boundary layer 
(Figure 4). In particular, KTS, SSA, and YS mimic the k ÷ 
distribution quite well. The characteristics of the calculated e + 
are similar to the channel flow case (Figure 5). For this flow 
though, two models, MK and SZS, predict a fairly correct behav- 
ior of e + in the region, 1 < y + <  10. However, it should be 
pointed out that four models, KTS, MK, SAA, and WI, give a 
maximum e + away from the wall, while SSA, SZS, and YS 
predict a maximum at the wall. The latter results are more in line 
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with DNS and experimental data which show a maximum at the 
wall. Again, the models KTS, SSA, SZS, and YS give rise to 
asymptotically consistent results, however, only SSA and SZS 
yield an a k that is in fair agreement with data. 

Finally, the comparisons of f~ with DNS channel flow data 
(Kim et al. 1987; Kim 1991) and boundary-layer measurements 
(Karlsson and Johansson 1988) are shown in Figures 6-8. It 
should be noted that f~ is specifically formulated to match the 
experimental boundary-layer data in the KTS model (Figure 8); 
however, its performance for the channel flow case is not as good 
as that given by SSA and YS (Figure 7) for the Re~ = 395 case, 
but it does correlate well with DNS data in the region 0 <y+ < 50 
for the Re~ = 180 case (Figure 6). The predictions of SSA and YS 
are also in agreement with data up to y÷ = 30 for the Re~ = 180 
case (Figure 6). It should be noted that f ,  evaluated from DNS 
data for this case does not go to one away from the wall. This is 
the reason why the predicted results of KTS, SSA, and YS are 
not in agreement with data in the outer region. On the other 
hand, SSA and YS also predict the measured f ,  fairly well in the 
boundary-layer case (Figure 8). In general, the calculated f~ of 
JL, LS, and WI yield curves with very narrow dips, while those of 
CH, MK, and SZS give very slow rise from the minimum to the 
asymptotic value. The prediction of SAA is between those of JL, 
LS, WI and CH, MK, SZS and is rather poor compared to those 
of KTS, SSA, and YS. These results indicate that whenever the 
model calculations of U +, - u v  +, k ÷, and e + are in general 
agreement with data, the calculated f~ also correlates well with 
DNS data and experimental measurements. 

Comparisons with backstep flow 

Having assessed the performance of the models against simple 
flows, the next step is to examine their abilities to predict 
complex flows. A complex flow case where DNS data are avail- 
able is the backstep flow investigated by Le et al. (1993). An 
experimental investigation of this same backstep flow has been 
carried out by Jovic and Driver (1994), and their measurements 
are also used to validate the model calculations. This flow 
consists of the following phenomena; separation, recirculation, 
reattachment, and the development of a boundary layer down- 
stream of the reattachment point. The backstep flow also in- 
volves shear-layer mixing in the region bounded by the recireula- 
tion and forward flow. Furthermore, the geometry undergoes an 
expansion, therefore, downstream of the step entrance, the flow 
experiences an adverse pressure gradient. Therefore, this simple 
two-dimensional (2-D) flow embodies all the fundamentals of 
complex flows and is a real test of any two-equation model. The 
geometry of the backstep flow (Le et al., 1993; Jovic and Driver, 
1994) has an expansion ratio of 1.125 and a Reynolds number 
based on uniform inlet velocity U and step height h of 5100. This 
set of DNS and experimental data provides by far the most 
complete measurements of Cf = 2"r~/pU 2 on the step wall and 
distributions of mean velocity and turbulence statistics up to 20h. 
Here, % is the wall shear stress. In view of this, sufficient data 
are available to assess the models' ability to replicate flow 
separation, recirculation, reattachment and the subsequent 
boundary-layer development downstream of the reattachment 
point. 

In this assessment, only five models are considered: CH, LS, 
MK, SSA, and YS. This choice consists of two of the early 
models (CH and LS) identified by Patel et al. (1985) as reason- 
ably good, one model (MK) representative of more recent pro- 
posals but fails to give overall good results for the simple flows 
tested, and two recent models (SSA and YS) identified above as 
performing well against the DNS data of simple flows. All five 
models are of the k-e type. Among the five models, the only local 
model is LS, while others are not. Because the performance of 

the k-r and k-oJ models are not comparable to those of SSA and 
YS, the performance of these models is not assessed in this 
section. The 2-D elliptic code of So et al. (1988) is used to 
calculate the backstep flow, and the calculation domain extends 
from the step entrance (x= 0) to x=50h. Therefore, the 
parabolic condition can be assumed at the exit. So et al. (1988) 
found that a grid of 78(x) by 66(y) is sufficient to give grid 
independent solutions for the four Reynolds-stress and one two- 
equation models considered. Of these five, four are near-wall 
models. For the present study, the grid is refined to 91 by 81 with 
30 grid points concentrated in the region, 0 <y+< 50. With this 
grid, all model calculations are found to be grid independent. 

The comparison of the calculated Cf with data is shown in 
Figure 9, while the estimated reattachment length is tabulated in 
the accompanied table in the figure. With the exception of LS, 
the other four models yield predictions of the reattaehment 
length correct to within 10%. It is clear that models with explicit 
y÷ dependence in f~ (CH and MK) yield an incorrect behavior 
of Cf in the vicinity of the reattachment point. As a result, their 
predicted recovery is also in error. The local model (LS) gives the 
worst Cf distribution, with a large overshoot followed by a 
sudden drop in the immediate vicinity of the reattachment point. 
This behavior is indicative of the incorrect prediction by LS of 
the recirculation and reattachment regions. On the other hand, 
YS slightly overpredicts, while SSA gives a fairly accurate esti- 
mate of the Cf distribution downstream of its minimum. Com- 
parisons of the shear stress, - h-~, and k distributions at x /h  = 4, 
6, 10, 15, and 19 are shown in Figures 10 and 11, respectively. 
Again, SSA gives fairly accurate predictions of these variables. 
The next best is given by LS and YS, where they overestimate 
slightly the maximum value of k (Figure 10). Other model 
predictions are in error by different amounts. In certain loca- 
tions, the maximum k is greatly overpredicted (Figure 10), while, 
in other locations, the - ~'v is vastly underestimated (Figure 11). 
It seems that incorrect predictions of the (7/ distributions by LS 
and YS have little effects on the calculations of -u '~  and k. 
Overall, these results tend to show that SSA can replace the 
behavior of a backstep flow quite well. 

Conclusions 

Ten near-wall two-equation models of the k-e, k-% and k-co type 
are used to calculate simple 2-D flows where detailed DNS and 
experimental data are available. In particular, the models are 
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assessed for their ability to calculate Couette flows, where con- 
ventional two-equation and second-order models fail to predict 
the spatial distribution of k + correctly. Detailed comparisons 
with DNS data reveal that an asymptotically consistent near-wall 
model is important to the correct prediction of turbulent Couette 
flows. When an asymptotically consistent near-wall model is 
used, the fl0w properties near the wall as well as far away from 
the wall are calculated with fair accuracy. On the other hand, if 
the near-wall model is not quite asymptotically consistent, the 
predictions of the mean 'velocity and turbulent shear stress are 
still in relatively good agreement with DNS data; however, its 
predictions of k is incorrect, both in the near-wall region and in 
the central core of the channel. In general, models whose damp- 
ing functions are indepenclent of y + yield better agreement with 
data than those that are dependent. For the latter kind of 
models, the performance is dependent on the flow type as well as 
the flow Reynolds numbers. Overall, the k-e models that are 
asymptotically consistent perform better than the k-to and k-r 
models in the six flow cases considered. Besides, there .is no real 
numerical advantage to solve the k-to and k-'r models compared 
to the k-e models. The boundary conditions invoked for e poses 
no real numerical problems as far as numerical stability is 
concerned. Among the five k-e models that solve for the true e, 
only SSA, SZS, and YS art; capable of giving the correct trend for 
e in the very near-wall region. However, it seems that the correct 
prediction of e in this region has little effect on the calculation 

of the distributions of other properties away from the wall. It 
does, however, affect the calculated ak, ~,,, auv, u , ,  and K. This 
study shows further that another important feature to model 
correctly is the near-wall behavior of the damping function f , .  
Because SSA and YS are asymptotically consistent and yield a 
fairly correct calculation for f~, their predictions of the three 
basic simple flows are, in general, better than all other two-equa- 
tion models examined. 

Five of these models, CH, LS, MK, YS, and SSA, are used to 
calculate a backstep flow where DNS and experimental data are 
available. All five models examined give a fairly accurate predic- 
tion of the reattachment length, correct to within 10%. Further- 
more, the results show that models with explicit y+ dependence 
in f~ (CH and MK) yield at Cf  distribution that is not very 
realistic around the reattachment point. On the other hand, LS 
yields a large overshoot and a sudden drop in C/ in the sur- 
rounding region of the reattachment point, while YS slightly 
overestimates Cf downstream of its minimum. Only SSA gives a 
fairly correct prediction of the Cf distribution downstream of its 
minimum point. As for the predictions of the mean velocity, - uv 
and k, the overall best results are given by SSA. In view of this, it 
can be concluded that SSA is capable of mimicking the complex 
behavior of a backstep flow fairly well, while other models tested 
give results that are in error to different degree. These calcula- 
tions further demonstrate the importance of asymptotic consis- 
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tency in near-wall modeling as well as having an f~ that behaves 
properly in the near-wall region. 
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